SUSTAINABLE FIBER PROGRAM (SFP)

Criteria for the Sustainable Production and Processing of Natural Fibers
Table of Contents

Introduction ... 4

1 Principles.. 7

1.1 Aim of the Standard.. 7
1.2 Scope & Structure .. 7
1.3 Version .. 7

2 The Agricultural Pillar: Technical Criteria for Sustainable Fiber Production based on Agricultural Practices ... 8

2.1 Land History .. 8
2.2 Land Preparation .. 8
2.3 Seeds .. 8
2.4 Fertilizers .. 8
2.5 Soil Conservation ... 10
2.6 Irrigation or Water Use ... 10
2.7 Plant Protection Chemicals .. 11
2.8 Harvesting .. 12
2.9 Material Storage .. 12
2.10 Substitution ... 12
2.11 Traceability .. 12
2.12 Forested Areas .. 12
2.13 Management of Farm Environment .. 13
2.14 Storage, Packing & Transport ... 13
2.15 Farm Record Keeping & Internal Farm Quality Assurance System 13
2.16 Separation of Fibers .. 14
2.17 General Requirements for the Agricultural Pillar ... 15

3 The Husbandry Pillar: Technical Criteria for Sustainable Fiber Production based on Animal Husbandry Practices ... 17

3.1 Selection of Animals .. 17
3.2 Shelter for Animals .. 17
3.3 Animal Safety ... 18
3.4 Feeding Animals ... 18
3.5 Treatment of Animals ... 19
3.6 Harvesting of Raw or Grease Wool ... 19
3.7 Wool Processing ... 20
3.8 Harvesting Silk .. 20
3.9 Silk Processing ... 20

4 The Processing Pillar: Criteria for Label Grading and Logo Use for Packed Fiber .. 21

5 Quality Control ... 23
 5.1 Description of Processes ... 23
 5.2 Transportation & Quality ... 23
 5.3 Mass Balance Calculation ... 23
 5.4 Technical Quality Parameters for Fiber ... 23

6 Social Criteria .. 25
 6.1 Child Labor .. 25
 6.2 Forced Labor ... 25
 6.3 Health & Safety .. 25
 6.4 Freedom of Work .. 26

7 Safety & Hygiene .. 28

8 Inspection of Smallholder Farmer Groups ... 29
 8.1 Farmer Group .. 29
 8.2 Internal Control System (ICS) ... 29
 8.3 External Audit ... 30
 8.4 Training .. 31

Annex I – Pesticides, Growth Regulators, Defoliators, Herbicides and Promoters 32
Annex II – Heavy Metals ... 34
Glossary .. 35
Introduction
Over the past years it has become apparent that the traditional Textile and Garment industry industries are crucial, but potentially harmful industries. They are crucial because they clothe us. They are potentially harmful due to environmental hazards, use of chemicals and their irresponsible discharge, as well as social welfare issues.

The Need for a Comprehensive Program on Natural Fiber

There are many initiatives designed to address these issues. To mention those initiatives that have had the largest impact in the industry so far:

- Privately as well as government owned standards on organic production;
- Standards that deal with processing of organic textile products, e.g. Textile Exchange standards and the Global Organic Textile Standard;
- Initiatives such as Better Cotton Initiative that deals with sustainable cotton.

Without going into detail of the standards we mention above, there is no standard that deals with certified, non-organic – but sustainable, natural fiber. Taking the current standards into account, the Textile and Garment industry industry is moving ahead to making mainstream natural fiber – not only cotton – sustainable – not only certified organic.

Before you lies the Sustainable Fiber Program, a standard that identifies and defines guidelines and criteria for growing and processing natural fiber, intended for use in, among others, the textile industry. By creating this standard we have tried to address the issues above: the standard covers all natural fiber, not just a few; it uses certification as a basis for verification; it enables the use of sustainable, non-organic, fiber.

Sustainability

As a basis of this standard, we have taken the definition of sustainable development from the 1987 Brundtland Commission: “meeting the needs of the present without compromising the ability of future generations to meet their own needs” (United Nations, 1987: "Report of the World Commission on Environment and Development."; General Assembly Resolution 42/187, 11 December 1987). In essence, sustainability strives to balance environmental, social and economic considerations.

To create a more sustainable world, we must imagine our future and bring it into existence. A world based on renewable materials, no persistent toxins, no waste and with respect for biodiversity and equity.

Aim of the Program

This program aims to approach the fashion and textile industry in a way that safeguards the livelihoods and wellbeing of people by reducing poverty and at the same time minimizing impact on the environment. Practically this means that this standard addresses:
• Welfare of the farmers in terms of labor rights and a fair pricing system to uplift their living conditions;
• Environmental concerns including GHGs by reducing the contaminants during use, conserving the water and energy for a safe, hygienic and better working environment;
• Profit in a fair and transparent manner which is socio-economically feasible and viable throughout the chain of custody.

Scope of the Sustainable Fiber Program

Sustainability in this industry is not only about organic production or only about cotton. One needs to think of other natural fibers too, from agricultural as well as from animal origins. In short, these standards for sustainable production cover:

• Natural fibers originated from agricultural practices (Stem, leaf, root, seed, bark, florescence etc);
• Natural fibers originated from animal husbandry practices (animal wool);
• Natural fibers originated from insect rearing (larvae rearing for fibers such as silk);
• Tracking & tracing of the raw materials from the source of certified production.

Basis of the Sustainable Fiber Program

Practices that work well in specific regions of Latin America may not do so well in those of Africa or may totally fail in Asian regions, and vice versa. What makes this standard stand out is the adoption of locally and regionally accepted best practices in agriculture and animal farming. Indeed, local IPM practices that form the technical basis of this program are specific in terms of climate, soil and other agricultural conditions.

This program draws heavily on local and regional concepts of sustainability, rather than a generalist and global definition. It takes the best of organic agricultural and husbandry practices and translates them to more widely achievable sustainable practices, with the rigidity of maintaining a conversion period – a well known concept of the organic certification schemes. It takes into account the entire chain of custody, from fiber to retail by using traceability software such as Trace ‘N Trade. Finally, it features fiber quality parameters – making contamination with non-sustainable fibers easily identifiable by laboratory analyses.

Having a program that places locally recommended IPM practices at the centre makes farmer training and the implementation of IPM practices possible and practicable, because they use locally available resources. Social and environmental restrictions that are not part of an IPM may require some extent of training and education. Specifically for the social criteria, we have drawn heavily on certification schemes such as ETI (Ethical Trading Initiative) and SA8000.

Criteria on the ‘processing side’ of the supply chain have been included into this program to the extent that they are the result of criteria set in the ‘farming side’ of the supply chain. That is to say, without those processing criteria, sustainability on the ‘farming side’ cannot be ensured – e.g. traceability, separation, quality parameters and labeling criteria.
The verification scheme that makes the program reliable encompasses annual audits by qualified inspectors from specifically recognized certification bodies. Depending on risk and other external factors, the annual audit may be followed up by unannounced audits. The scheme also requires certification if audits are successful.

The Sustainable Fiber Program does not re-invent the proverbial wheel – so implementation of the Program is practicable. It merely combines best practices, lists of approved chemicals and their recommended dosages, social criteria, training and emphasis on sustainable productivity. And by doing so the program lays out a sustainable roadmap for farmers, growers of natural fibers, as well as processors, administrative units, traders and manufacturers throughout the supply chain. This roadmap will enable the supply chain to make appropriate sustainability claims on their produce. It will pave the way for reliable and practicable sustainable natural fibers.

Finally we wish to thank the following persons and organizations for their valuable contributions to this program:

- Ms Anne Gillespie – Director of Industry Integrity, Textile Exchange, USA
- Dr. G. Hegde – Pathologist, Assistant Professor, University of Agricultural Sciences Dharwad, India
- Dr. Ajith Kumar – Meteorologist, Assistant Professor, Kerala Agricultural University, India
- Dr. P.K. Roul – Agronomist, Professor & Dean Research, Orissa University Agriculture & Technology, India
- Mr Bhupendra Singh – Secretary General, International Jute Study Group, Dhaka, Bangladesh

On behalf of the Working Group for the Sustainable Fiber Program,

Bangalore/Mumbai, Hong Kong & Dhaka, September 2012
1 Principles

1.1 Aim of the Standard
The aim of the standard is to identify criteria to ensure that natural fiber originating from agricultural, animal husbandry practices (from animal rearing to harvesting of fiber) and insect rearing practices as well as the consistent labeling of such natural fiber is produced in the system that is economically viable, environmentally sound, and socially acceptable – in short: sustainable. It provides credible assurance to the end consumer, buyer and supply chain manufacturer to promote products that environment friendly and sustainable. Control Union adopts the basic sustainability principles of people, planet and profit in this standard.

This standard helps farmers and companies in the supply chain to:

1 Safeguard welfare of the farmers in terms of labor rights and a fair pricing system to uplift their living conditions by either maintaining or enhancing the productivity of the farming system or keeping the production risk to an acceptable level;
2 Address environmental concerns including Green House Gases (GHGs) by reducing the contaminants during use. Conserving water and energy for a safe, hygienic and better working environment with no harmful effects on natural resources or biodiversity;
3 Safeguard that profit is earned in a fair and transparent manner whilst making sure it is socio-economically feasible and viable throughout the chain of custody.

1.2 Scope & Structure
The Sustainable Fiber Program (SFP) is a production and processing standard based on three pillars:

- The Agricultural pillar: defines criteria related to natural fiber originating from agricultural practices. It covers topics such as land history, land preparation, use of sustainable inputs for protection of soil fertility & pest management, harvesting, storage, packing, labeling and export-import administration;
- The Animal Husbandry pillar: defines criteria related to natural fiber originating from animal husbandry and insect rearing practices. It covers the history of the animal/ larvae rearing practices including living/grazing conditions and habits, use of sustainable inputs for pest and disease management, harvesting of fiber, storage, packing, labeling and export-import administration;
- The Processing pillar: defines criteria for the processing of above-mentioned natural fibers.

The final product originating from sustainable practices of the raw natural fiber is included in the scope of the standard. Traceability of the products is based on tracking & tracing of the raw materials from the source of certified sustainable production.

1.3 Version
The first version, 1.1, of the Sustainable Fiber Program was released and dated 20 October 2012.
2 The Agricultural Pillar: Technical Criteria for Sustainable Fiber Production based on Agricultural Practices

This part of the standard covers all the technical criteria pertaining to the sustainable production of natural fibers originating from agricultural practices. It includes the sustainable production practices with regard to land history, land preparation, use of sustainable inputs for soil fertility & pest management, harvesting, storage, packing, labeling and export-import administration. This standard takes into account fiber production of crops, including but not limited to cotton, kapok (silk cotton), coir and bast fiber like flax, ramie, hemp, jute and leaf fiber, pineapple and abaca.

2.1 Land History
The history of the land plays a critical role when establishing the conversion period for sustainable fiber production. The previous use of the site shall be assessed for the potential risk of contamination of produce. The proposed production shall be assessed taking into account the prior land use, type of soil, erosion, quality and level of groundwater, availability of sustainable water sources, and impact on adjacent areas/crops. A corrective action plan shall be carried out to provide evidence that all risks in new agricultural sites are identified and are reduced.

2.2 Land Preparation
Only physically separate and identifiable units of land are permitted for sustainable production. Cultivation (such as ploughing) by animals is permitted; provided that the animals are treated in a humane manner. Mechanized land preparation by tractor or any other equipment is allowed, provided that pollution levels are in accordance with local regulations.

The land shall have defined boundaries and buffer zones of sufficient size or other features (e.g. runoff diversions or windbreaks) to prevent the unintended application to the crop of a prohibited substance as defined in Annex I, or contact with a prohibited substance applied to adjoining land not under sustainable management. Techniques need to be used which are proven to improve or maintain soil structure, limit soil compaction and reduce the possibility of soil erosion. Soil testing shall be done by a laboratory that is accredited specifically for the activity of soil testing as per ISO 17025 standards.

2.3 Seeds
Local varieties, defined here as genotypes of the plant adopted for local conditions, and hybrid seeds are allowed for sustainable production. GM seeds are allowed based on the legislation applicable in the country of production. Seeds shall not be treated with any harmful chemicals. Use of microbes as seed treatments such as rhizobium is allowed, and is considered to be a best practice. The project shall select seeds in such a way as to maximize yield. If the fiber is mixed with other crops, similar practices shall be followed in order to make compliance to SFP more robust.

Before sowing of seed, herbicide use in soil is permitted in case of high weed infestation, provided that the types and dosages indicated by manufacturer are followed and it is allowed as per the relevant regional/state legislations.

2.4 Fertilizers
Crop nutrition planning is required to find the source and quantity to match the fertility status of the soil. Inputs such as organic & inorganic fertilizers are allowed. Industrial waste and toxic materials
may not be used as nutritional sources for soil and plants. GHGs from animal husbandry shall be evaluated before application of the practice. Use of synthetic inorganic fertilizer shall require justification from the viewpoint of the Low Input Sustainable Agriculture System (LISA) or Low External Input Sustainable Agriculture System (LEISA) as defined by the United States Department of Agriculture (USDA).

All applications of soil and foliar fertilizers, both organic and inorganic shall be recorded. Fertilizer records shall include:

- The location of the treated areas;
- The name or reference of farm block, field or section;
- Application dates;
- The type of fertilizer used, including the trade name and active ingredient, N:P:K ratio or concentration of nutrients, etc.;
- Rate of application and weight/volume applied;
- Method of application and machinery used e.g. fertigation, tractor-mounted or trailed spreader;
- Details of the operator applying the fertilizer.

Inorganic fertilizers shall be stored in a manner that is appropriate, so as to reduce the risk of contamination of water courses.

The project shall plan alternative sources of nutrition either through cattle management / bio-inputs or through recycled crop residues. Practices such as the use of farmyard manure, residue harvesting, waste recycling or using vermicompost, are permitted. Organic fertilizer shall be stored in a manner that is appropriate, so as to reduce the risk of contamination of the environment. Risk assessment shall be carried out for organic fertilizer taking into consideration of its source and characteristics, before application. No human sewage sludge shall be used on the farm. If raw manure is used, it shall be fully decomposed in order to increase its nutritional value for plants. All types of manure defined in the farm shall be protected from sunlight, rain and any other physical, chemical and biological exploitation. Origin of microbes as genetically modified shall be labeled and indicated in the system of sustainable production. Use of gypsum and lime for pH correction is allowed for the benefit of the ecosystem and plant diversity, but only in case it is required for correction due to extreme pH conditions of the soil. Liming shall be restricted in order to limit the production of GHGs. Use of green manuring crops, cultivating legumes to improve the soil fertility is also permitted.

Stored fertilizers shall be:

- Separated from crop protection products (pesticides) to prevent cross contamination;
- Correctly labeled to ensure identification and appropriate separation;
- Covered to protect from deterioration by weather;
- Stored in a clean and dry environment that minimizes the chance of pest infestation and water damage.

Purchased fertilizers shall be accompanied by documentary evidence of chemical content. A person responsible for technical procedures shall demonstrate competence in determining which quantities and types of fertilizer (organic and inorganic) shall be used.
Measures to avoid Nitrogen and Phosphorus being lost to the environment as GHGs shall be implemented. Documented evidence shall be provided of the implementation of these measures. Nitrogen content of the soil subjected to freeze-thaw and anaerobic condition shall be kept in order to limit the production of GHGs.

Nitrogenous fertilizer shall be used if necessary as nitrate-based fertilizers are less prone to ammonia loss to the environment than urea (amide-based fertilizer). Maintaining optimum soil moisture to limit crack down of soil, freeze-thawing, cracking, compacting, and water-logging shall be considered to be good practice in view of reducing GHGs.

Training shall ensure that the users of nutrients are aware of:

1. The risk of N and P losses due to volatilization, leaching, run-off and erosion, and;
2. How to reduce such losses. Users should be aware of the role of N₂O (nitrous oxide) as a GHG.

2.5 Soil Conservation

The physical and chemical properties, organic matter and biological activity of the soil shall be determined for sustainable agricultural production. The project shall have a plan for the soil conservation which includes maintenance or improvement of soil organic matter through the use of soil carbon-build up by appropriate crop rotations, manure application, pasture management and other land use practices.

Measures to maintain a soil cover shall be taken in order to provide for a conducive habitat for soil biota, minimizing erosion losses by wind and/or water.

Appropriate soil management practices shall be maintained for sustaining agricultural production:

- Improving soil productivity by improving the availability and plant uptake of water and nutrients through enhancing soil biological activity, replenishing soil organic matter and soil moisture;
- Minimizing losses of soil, nutrients, and agrochemicals through erosion, runoff and leaching into surface or ground water.

2.6 Irrigation or Water Use

Systematic methods of a predicted irrigation schedule shall be used to calculate the water requirement of the crop either by using weather based methods (e.g. account balance method) or soil moisture based methods. Irrigation water shall be abstracted from sustainable sources. Irrigation system design shall be suited to crop, soil, and site and water availability.

A proper and efficient irrigation technologies and management plan shall be implemented to minimize waste and to avoid overuse of water, excessive evaporation or run-off, excessive leaching and salinization. Untreated sewage water shall not be used for irrigation. Water must be assessed for risk of contamination and must be tested frequently in an ISO 17025 accredited laboratory for presence of microbial contaminants, chemical residues, heavy metals contaminants and for other parameters including N, P, K, EC and pH.
2.7 Plant Protection Chemicals

The project shall have defined long-term strategies to manage risks by following the principles of Integrated Pest & Disease Management. Chemicals applied shall be appropriate to the target species and applied according to label instructions. Only chemicals registered in the country of production to target crops shall be used. An inventory of the occurrence of pests and diseases shall be maintained.

A safe waiting period (as defined on the labels of the pesticides) for all synthetic chemicals shall be observed. The plant protection chemicals are used as per legislation applicable in the country of production. A list of chemicals that are used and that are approved for use on crops being grown along with the invoices shall be kept. Good practices related to crop protection shall be practiced, i.e.:

a) Using resistant cultivars and varieties, crop sequences, associations, and cultural practices that maximize biological prevention of pests and diseases;
b) Maintaining regular and quantitative assessment of the balance status between pests and diseases and beneficial organisms of crops;
c) Adopting sustainable control practices where and when applicable;
d) Applying pest and disease forecasting techniques where available;
e) Determining interventions following consideration of all possible methods and their short- and long-term effects on farm productivity and environmental implications in order to minimize the use of agrochemicals, in particular to promote integrated pest management (IPM);
f) Storing and using agrochemicals according to legal requirements of registration for individual crops, rates, timings, and pre-harvest intervals;
g) Ensuring that agrochemicals are only applied by specially trained and knowledgeable persons;
h) Ensuring that equipment used for the handling and application of agrochemicals complies with established safety and maintenance standards;
i) Recording all chemical applications, including the crop name and/or variety, location, date of application, trade name, justification, quantities and machinery used.

Plant Protection Product Residue testing shall be conducted in ISO 17025 accredited laboratories. Residue results shall be traceable to the farm, and checked against the MRLs of the country of production and sale of products. The producer or the producer's customer shall have available a list of current applicable MRLs for the market(s) where produce is intended to be traded (whether domestic or international). Internal segregation and traceability of certified produce is needed if trying to meet MRLs of different markets for different batches of produce (i.e. product exported to Japan, EU, and US).

Botanicals that are registered by local, regional or national government are allowed. Botanical formulae that are not registered shall be evaluated and approved by the certification body before their use. Nicotine-based botanical formulations are not permitted.

Application equipment shall be in good condition to ensure accurate delivery of chemicals. Storage area for chemicals shall be identified and shall be under lock and key. Empty containers shall be disposed of in a manner that will avoid contamination to humans and the environment. Relevant local regulations and legislation shall always be followed.
2.8 Harvesting
Harvesting bags shall be intact (so as not to contaminate the harvested fiber) and grading shall be done based on harvest indices such as maturity and infestation. Training shall be given to the farmers on these harvested indices. Infested fiber or contaminated fiber is kept harvested and kept separately.

2.9 Material Storage
Harvested produce shall be stored separately from chemicals such as pesticides and conserving agents. If any chemicals or conserving agents are used to protect the storage area from pests, then the project shall carry out a risk assessment in accordance with locally recommended practices to decide which chemicals are to be used. Only locally, regionally or nationally accepted storage chemicals may be used with proper risk assessment. Before use, the project shall request from the CB approval for the use of such chemicals as input. Additionally, testing of the fiber may be carried out to further legitimize the use of the chemical before sale to the next process.

2.10 Substitution
Substitution of sustainable raw materials shall be prevented at any time.

2.11 Traceability
Traceability of the raw materials is maintained using a farmer code and supported by a farmers diary containing the records of practices of the crops up to the harvest of fiber.

2.12 Forested Areas
Input products and semi-finished products that are FSC or PEFC certified by accredited bodies and recognized by the FSC, respectively PEFC standard setting bodies, are permitted in the Sustainable Fiber Program, provided that they also comply with Annex I and II of this Program. Non-certified tree plantations shall be certified to SFP, whereby the minimum requirements shall be that tree crops:

- Are not sourced illegally;
- Are sourced from designated forest land as wild harvesting which is pre-approved by the national, regional or local authorities or shall be done in marginal land not suitable for food production;
- Are not in violation of traditional and civil rights;
- Are not from forests of high conservation value;
- Are not from forests converted to plantations or to non-forest use;
- Do not threaten the biodiversity or endangered species.

The tree crops shall the transferred to pulp production processing unit for sustainable processing with traceability information.

Carbon dioxide (CO₂) production materializing in the form of GHGs, mainly derived through conversion of land, such as forest and savannah to crop land or grassland to arable land shall not be used.
2.13 Management of Farm Environment

SFP encourages an operator to continuously improve its environmental performance. The operator shall first commit to an environmental policy, on the basis of an established plan and sets objectives and targets for improving environmental performance. The operator shall implement and evaluate its environmental performance to see whether the objectives and targets are being met. If targets are not being met, corrective action shall be taken. The results of this evaluation shall be reviewed by top management and new targets in a revised plan must be set.

The operator shall carry out risk assessment on environmental degradation. Here, the term environment refers to farm environment, storage environment and the surrounding environment. The operator shall undertake to:

a) Minimize the waste and discharge of chemical water to the farm, if applicable;

b) Monitor the waste and discharge that are considered as potentially harmful;

c) Provide follow-up in case of waste or pollution incidents;

d) Document training records pertaining to conservation of water and energy;

e) Minimize use of synthetic chemicals and their correct disposal procedures;

f) Identify within the risk assessment any other hazards associated with farming, storage and processing.

2.14 Storage, Packing & Transport

- Only non-permeable and PVC-free packing materials are permitted;
- In case of re-using packing materials, it shall be ensured that they are clean, in sound condition, and of sufficient strength to adequately protect the fiber;
- Packing material may not contain salt or other corrosive materials and may not contain any material that will contaminate or adversely affect fiber, such as sisal or other hard fibers;
- Packing which has been cut open to obtain samples shall be patched up prior to shipment from a warehouse using an industry-recommended material and technique, so that the bale is fully covered;
- Packing material that has been chemically treated shall be approved by the certification body.

2.15 Farm Record Keeping & Internal Farm Quality Assurance System

The following elements shall be recorded:

a) The origin, nature and quantities of the sustainable or sustainable in-conversion products which have been delivered or purchased to the unit shall be listed along with farmer name and farmer code;

b) The nature, quantities and source of the products which are produced in accordance with the SFP which have left the unit;

c) Any other traceable information such as origin, source, nature and quantities of raw fiber collected, along with its risk assessment and grading which requires inspection of the operation.

At the collection point, various quality grades of sustainable fibers and in-conversion fibers are collected along with traceability information. The operator shall check the integrity of the means of transport and packing, as well as verify the origin and nature of the sustainable products from the information contained in the label/documentation upon receipt of the sustainable products.
If there is doubt as to the sustainable status of a product, it shall only be processed or packing after elimination of that doubt. Reception checks at the various collection points before ginning of the raw fibers shall be carried out during the inspection of goods before processing.

2.16 Separation of Fibers
At all stages of production and processing fiber must be separated by appropriate methods, such as using manual (physical) or mechanical process in sustainable manner without any risk of contamination. If the raw materials are soaked in water in order to remove the fiber, it shall be ensured that clean water is used for soaking. Such water shall be disposed of appropriately. Water management for such processing step is ensured through judicious and if possible re-use of water, thereby taking care not to create non-permissible contamination.

The reception check for farm produce shall contain the following procedures:

a) Label verification check;
b) Visual check where contamination, damage, integrity are assessed and if necessary the product shall be rejected before allowing it to be stored in (separate) processing premises;
c) Traceability check, which ensures the traceability of the fibers back to farm and farmers; if there is doubt as to the origin of the fiber, this fiber may not processed under certification;
d) Details of the quantities, persons handling the product, transport means and the label details are recorded and stored in an identified place;
e) The source of the raw materials under SFP production (including the in-conversion SFP production) shall be separated from other materials;
f) Separation, identification and marking shall be done in order to limit the contamination with other products or objects. Proper care is taken to protect the produce from physical, chemical and biological hazards;
g) The fiber collected by either physical or mechanical process is packed in bulk after undergoing suitable drying and pressing procedures. This fiber shall be labeled with “Sustainable Fiber” or “Sustainable In conversion Fiber”, lot number and quantity that has been packed.

If a chemical process is used for retting or removal of fibers, then alkali and acids may not be used during the decomposition or fermentation process whilst removing pectin and other impurities. When such fiber, after breaking from the plant, is properly dried, pressed and packed in bulk. The fiber is then labeled with “Processed Fiber with Sustainable Inputs”, its lot number and quantity packed.

Training of relevant personnel shall be carried out on the topics of avoiding contamination and mishandling, as well as general safety procedures including first aid. These topics shall be trained to all working personnel with proper Standard Operating Procedures and Policies and are applicable whilst separating the fiber from the natural plant source.

All fiber processing and storage areas shall be cleaned before processing and storing sustainable fiber products. Personal hygiene (washing hands, legs, wearing protective equipment) shall be practiced. Use of synthetic cleaning chemicals shall be minimized. If they are used, care shall be taken to not create any chemical residues.
Traceability information with incoming and outgoing products, as well as their loss and waste quantities, is recorded at each stage of processing.

2.17 General Requirements for the Agricultural Pillar

2.17.1 Prohibited Practices

The following practices are prohibited:

- Slash burning of residue;
- Using decomposed animals as a source of nutrition;
- Carrying out domestic activities that lead to the contamination of crops and land;
- Using unapproved inputs or practices;
- Cultivation of tobacco and other harmful plants listed as restricted or banned by local government is not allowed.

2.17.2 Conversion

Licensees shall meet all the requirements of these standards during the period of conversion from conventional to sustainable production. Where the land was previously under exploitative cropping, the conversion program shall begin with a fertility-building phase.

Units will be registered for certification from the date of their compliance with all requirements of this standard as verified during their first audit, or from the date that they have satisfactorily addressed any outstanding major non-conformity arising from that audit. No claims as to the SFP status of their produce may be made during the first twelve months of conversion to sustainable farming.

The certification body (CB) shall perform a surveillance audit after registration to verify that satisfactory progress is being made during shifting from conventional to sustainable production systems. After a period of twelve months, and subject to a satisfactory conversion audit, units will be accepted as being “In Conversion”. Land and production may be eligible for SFP certification and products may only be sold under a description that indicates or implies that the product has been produced in accordance with these standards after a period of conversion of at least 12 months for all products, and two years for land based products.

In certain cases, the CB may decide to extend or reduce the conversion period having regard to the previous use of the land area in question provided there is adequate evidence of compliance with the requirements of this Program. Where land has been abandoned and/or not farmed for a period of more than three years the CB may reduce the conversion period to one year, provided that:

a) There is evidence that all the land area under consideration was in fact not farmed for managed in any way;

b) Residue tests show no prohibited synthetic materials above the acceptable limits (as defined in Annex I);

c) There are no heavy metals present in excess of limits as per national or local legislation.
If the land is already in use, records shall be maintained from last three years to demonstrate that SFP methods are being used. The CB shall closely monitor the project plan and implementation of the program for the current proposed season to justify the reduced conversion period. The CB may decide in certain cases even to extend the conversion period if the sustainable practiced are not been followed.

Details such as cropping plans for the last 3 years are to be recorded and an optimal IPM crop sequence is planned for the consecutive year by the farmer/company in order to achieve sustainable agricultural production.

2.17.3 Certified Input Products for Natural Fibers

Input products and semi-finished products that are certified to nationally or internationally recognized organic and GlobalGAP standards, and where certification has been carried out by IOAS or ISO 65 accredited bodies, are permitted in the Sustainable Fiber Program, provided that they also comply with Annex I of this Program.

2.17.4 Double Registration of the Same Field

The CB shall be notified if produce from the same field is certified by, or registered with other sustainable (certification) programs such as organic certification, Better Cotton Initiative (BCI), Best Management Practices (BMP), etc.
3 The Husbandry Pillar: Technical Criteria for Sustainable Fiber Production based on Animal Husbandry Practices

This part of the standard covers technical criteria pertaining to the sustainable production of natural fibers originating from animal husbandry practices with regard to the history of the animal, rearing practices including living/grazing habits, use of sustainable inputs for pest and disease management, harvesting of fiber, storage, packing, labeling and export-import administration.

This standard takes into account animal fibers from sheep, goats, alpacas, camels, horses, llamas and various other animals including the fibers originating from silk worms and spiders.

3.1 Selection of Animals

The animals to be used for sustainable fiber production are generally selected based on the recommendation by local governments or research institutes based on the animals’ ability to adapt to local climatic conditions. Animals shall receive all due care, and it shall be made possible for the animals to carry out their innate behavioral traits.

Animals already reared under conventional practices shall be kept in conversion for one year to achieve the specific sustainable rearing method. In case of trial production in a new area, a pilot project with different species is adopted to establish the recommended package of practices keeping in mind similar conditions elsewhere. Diseased or sick animals adopted for sustainable practices shall be kept isolated from healthy animals. For treatment, local medicines with natural therapy or veterinary therapy shall be adopted. If the species identified for sustainable animal production have been cloned, then a Genetic Modification (GM) tag is applied with the final bulk fiber.

Animals shall be tagged with identification numbers in an ethical way, so as not to cause harm to the animals. If more than one species of animal are kept under the same shade, then they shall be chosen that they do not harm each other (Strategies for Sustainable Animal Agriculture in Developing Countries, FAO Animal Production and Health Paper, A.W. Qureshi, 1993, FAO Corporate Document Repository).

The selection of silk worm eggs or larvae is done based on the locally recommended package of practices for the specific climatic conditions. In this case, there is no conversion period as the eggs or larvae are true to type, and as such have a shorter life span.

Wild spiders producing silk fiber in natural vegetation such as forests shall be protected and kept along with their habitats, because these species are plant specific.

3.2 Shelter for Animals

When rearing practices take place in-house, sufficient space shall be allocated for the animals’ healthy movement and feeding habits. The space for the shelter shall be based on locally recommended practices. Construction of sheds shall be in accordance with a locally recommended package of practices in order to have proper ventilation, movement, feeding and watering facilities and safe release of excrement. The indoor air quality for healthy living of animals shall be checked on a regular basis in order to avoid the uncomfortable congestion of unhealthy air from habitats and excrement. The shelter shall be cleaned at regular intervals in accordance with recommended hygiene practices. The shelter shall provide free access to food and water to the animals during the
time of feeding. Wild animals shall be identified and kept separately in order not to harm other animals. For sanitation of the shed, judicious use of water and approved sanitary chemicals shall conform to a local package of practices. The shelter shall be constructed offering the best available protection against natural disasters. The sick, wounded or diseased animals shall be isolated from healthy animals and treated in an ethical manner.

Animals that graze freely shall be protected from wild animals and also from natural occurrences such as rain, hail storms, snow fall, cyclones or flooding. The selection of season-specific movement for natural grazing as per recommendation by local government is followed. The destruction of biodiversity shall be prohibited. Free grazing animals should have a predetermined path based on the available vegetation and water resources. These animals shall have free and open shelter, but shall on the other hand be safe and be provided with sufficient protection.

Silk worms shall be made able to maintain free movement by putting a specific rearing table as per the recommended package of practices. Sanitary measures to prevent disease are taken on regular intervals and feeding of green leaves is done as per the recommendation. The ideal temperature between 68°F (20°C) and 86°F (30°C) is recommended, especially during the first three instars. Incubators, where used, shall have a consistent temperature of 84°F (29°C) to optimize sustainable larvae growth. The later instars may be reared with or without an incubator.

3.3 Animal Safety
Animals are tied with a suitable device such as a rope or belt as per local or regional recommendation. Suffocation shall be prevented as it may lead to an animal’s death. Animals may only be tied for a limited period of time and must be properly fed with feed or vegetation. Drinking water and feed shall be within reach of the animals. They shall have free access to cultivated pastures in the field for grazing. Animals’ excrements are removed on a regular basis in order to avoid GHGs such as methane. The male and female animals are kept separately in order to avoid heat stress and bodily harm. Pregnant animals are kept separately and cared for properly. Animals shall be washed at regular intervals to keep them clean and to prevent contagious pests and diseases.

Free grazing animals shall be herded as a group and shall be protected from wild animals. The animals shall be kept under watch and with proper shelter in case of illness. Proper medication shall be given and the person in charge shall have sufficient knowledge of administering veterinary medication. Care shall be taken for the male animals that are in heat. They shall be prevented from violently mounting female animals.

Silk worms are turned in and out, keeping the vegetative contents in place to avoid the circulation of GHGs from excrements out of the production area. The rearing container shall not be placed in direct sunlight, which may cause larvae to overheat and die.

3.4 Feeding Animals
Animals shall be fed with proper feed formula. A mixture of feed formula to achieve a balanced nutrition is given to in-house reared animals. Grazing pastures are grown for their food as free grazing activities and the area shall be sufficient in terms of the number of reared animals. The pasture shall be maintained as per sustainable agricultural practices. The drinking water shall be free from physical, chemical and biological contaminants in order to prevent spreading of contagious disease. Feeding is done at regular intervals with feed quantities appropriate to their body weight.
Free grazing animals shall have enough pasture for grazing as a food source. Once the area is scarce in food materials, the group shall be made to move to a different location slowly. Any type of erratic movement keeping pressure on biodiversity for the food and water resource has a negative impact on the environmental sustainability. Deforestation, land degradation and depletion of fresh water storage as the result of massive grazing will indicate pressure on the ecosystem. Water sources shall not be polluted, such as in the event of excrements falling into the water source, as this may lead to peroxide contamination.

Silk worms shall be fed with fresh leaves and old leaves shall be kept out of reach as soon as the feeding is complete. The production of fresh leaves for feeding the animals such as larvae shall be in accordance with the area compared to the number of larvae to be reared and shall be produced in sustainable production method as described in chapter 2. The temperature of the area and relative humidity of the area shall be checked and sufficient ventilation shall be established for keeping the worms healthy. Caterpillars may not be fed an artificial diet.

3.5 Treatment of Animals

Animals shall be ethically treated and proper care has to be taken to maintain the healthy condition of the animal on a daily basis. Sick or pregnant animals shall be treated. In case of an animal’s death, it shall be disposed of in a proper manner (Composting Dead Livestock, A New Solution to an Old Problem; Iowa State University Sustainable Agriculture Paper, [no author or date given; http://www.extension.iastate.edu/Publications/SA8.pdf]). The animals are regularly treated against disease and pest attacks. Hormones, antibiotics and (other) prophylactic drugs shall not be used. Pesticides for treatment of external parasites such as ticks, mites, lice etc. are prohibited as these chemicals have a long residual life. Artificial treatment of semen for coupling is done as per recommendation. Any drugs, pesticides or chemicals used for treatment at unavoidable circumstances are based on the recommended package of practices or as per the advice of a veterinary surgeon. Care for free grazing animals shall occur in a similar manner.

Practices such as cutting off pieces of skin and flesh from the hindquarters of a domestic sheep (“Mulesing”) in order to prevent fly strike and smoother scar tissue without use of anesthesia or physically restrained animal shall be prohibited.

Pest and disease attacks in silk worm rearing shall be dealt with altering prevailing condition or with recommended treatment. Use of recommended doses of chemicals such as alcohol at appropriate times in order to prevent the spread of diseases shall be practiced. Viral diseases shall be dealt with in a sanitary manner. If the viral disease appears uncontrollable, complete destruction of worms shall be carried out to stop the spread of virus.

3.6 Harvesting of Raw or Grease Wool

While harvesting the wool from animals, precautionary measures shall be taken to prevent injury to their skin from external sources such as the sun, parasites and various pests and diseases. Skin damage is to be monitored by an expert whilst harvesting the wool from animals. Animals shall not experience tension during the harvest.

Only matured wool is to be harvested. Damage to penises and teats shall be restricted. Sick and pregnant animals are exempted from shearing and wool harvest. The appropriate harvest time of the
wool is based on the recommended package of practices and is based on breed use. Grading and sorting is done based on the quality of fiber obtained from different parts of the animal’s body.

Animals from which wool is harvested shall be allotted unique identification codes. The wool harvested from each animal shall be recorded and identified by an allotted batch or lot number.

The unique identification codes of the animals and the quantity of wool shall be recorded.

3.7 Wool Processing
The raw or grease wool is scoured in a series of alkaline baths containing water, soap, soda ash to remove sand, dirt, grease, dried sweat (suint). Alkali, detergents and water shall be used responsibly through recycling.

3.8 Harvesting Silk
After weaving, cocoons shall be stored in a warm place and further hatching shall be prevented. The cocoons that are to be harvested are left for the recommended period of time based on a maturity index and recommended package of practices.

Wild harvesting of silk in forest areas shall be done keeping biodiversity in mind. Only recommended types of breed, spiders or insects may be used for wild harvest. Endangered species that are able to produce fiber shall be protected. Silk may be directly harvested using local skills in a well-equipped manner and may be preserved for further processing.

3.9 Silk Processing
The cocoons are boiled in water or steamed to break the filament into fibers and the reeling process can be started in accordance with the duration based on the type of silk. The silk thus produced shall have traceability information based on the batch of larvae processed or type of silk produced with certain characteristics.
4 The Processing Pillar: Criteria for Label Grading and Logo Use for Packed Fiber

“Sustainable In-Conversion” is the transition period from conventional farming to sustainable production and the fiber thus produced during the transition period is called “Sustainable In-Conversion Fiber”. Sustainable fiber production is based on the integrated farm practices approach with minimum impact on soil and environment. The practices are region-specific and have been developed or approved by local governments or research institutes. If genetically modified plant or animal species are involved in the sustainable production method, it shall be labeled as “GMO” in bold font so that buyers and consumers in the chain of custody are aware of the fact that GM inputs have been used in that particular chain.

“Sustainable Fiber”: Finished or semi-finished products containing sustainable raw material, as defined in this standard, may label products as “Sustainable Fiber” when it is produced as per the sustainable practices defined above.

Use of GMO or non-GMO raw material shall be indicated on the label in bold font as follows: “GMO” or “non-GMO”, depending on the raw material input. In case of mixing GMO and non-GMO raw material the percentage of each shall be indicated on the label.

Certified products shall additionally be labeled with “[abbreviation of CB] + project number”, whereby the project number is a number issued by the CB to certified companies.

Lot or batch numbers shall be indicated on the labels for the purpose of traceability.

Company names and their addresses of the company selling the fiber shall be mentioned on the label. The name and address of the company buying the fiber may be placed on the label.

In the event of large scale spraying of the area or region by e.g. government (such as large scale spraying against malaria outbreaks), no label may be used on the affected products. However, this occurrence will not lead to projects being set back into the conversion period. The project will merely be in conversion for one year longer than is indicated in the action plan.

Processing Sustainable Tree to Pulp or Sustainable Fiber

For the production of viscose or other pulp fibers such as lyocell or modal rayon, chemicals may only be used, provided that the following criteria have been met:

- The chemicals have been successfully evaluated to be in accordance with chemical requirements as set out in the Global Organic Textile Standard (GOTS), REACH or bluesign®;
- The chemicals must be recycled throughout the process.
Example of a label:

<table>
<thead>
<tr>
<th>SUSTAINABLE LINT COTTON / SUSTAINABLE IN-CONVERSION LINT COTTON</th>
<th>CU812345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name and Address of the Seller:</td>
<td></td>
</tr>
<tr>
<td>Name and Address of the Buyer (optional):</td>
<td></td>
</tr>
<tr>
<td>Project Reference Number;</td>
<td></td>
</tr>
<tr>
<td>Traceability code: PR/Lot/Batch No.</td>
<td></td>
</tr>
<tr>
<td>GMO or non-GMO (indicating percentage of both):</td>
<td></td>
</tr>
<tr>
<td>Conversion period in number of years:</td>
<td></td>
</tr>
<tr>
<td>Lot tested for sustainable index; yes/ No</td>
<td></td>
</tr>
</tbody>
</table>
5 Quality Control

5.1 Description of Processes
Certified companies are obliged to maintain a documented system plan, that describes the processes, including the points of risk (=risk assessment) and a flow diagram.

A system ensuring product quality is developed and implemented by which all raw materials and all products, before, during and after the processing and preparation can be traced and identified. All points of risk are identified and documented where pollution with, or mixing with products polluted with, foreign material can occur during the process of storage and processing. Preventive measures are documented and taken accordingly.

Specifications of raw materials and products shall be recorded and available to the relevant personnel.

5.2 Transportation & Quality
Transport used for outgoing materials products shall be clean to restrict mixture or contamination with products that have not been obtained in accordance with the provisions. When dedicated transport is used, a written declaration from the transport company is sufficient.

The declaration shall state that the trucks and vessels are thoroughly cleaned. The trucks have to be checked randomly by the supplier. Reports of these particular checks shall be available on request.

Any external storage shall be considered a part of the facility, and rules applicable to the facility shall be applicable to the storage.

5.3 Mass Balance Calculation
A mass balance calculation shall be done capturing the following formula: “A sum of all incoming products = All outgoing products + loss + stock + waste”. Incoming amounts shall match the outgoing products, taking into account the loss and waste percentages. Addition of moisture, if applied during the pressing, shall also be taken into consideration.

5.4 Technical Quality Parameters for Fiber
The fiber may be tested for various parameters (see the below table) as per the risk assessment and may be compared with the importer’s country standard limits along with its related method use.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Adulterants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (Mean length (MM & INCH))</td>
<td>Contaminants</td>
</tr>
<tr>
<td>Density Kg/ m3</td>
<td>Pesticides</td>
</tr>
<tr>
<td>Variety (as declared by the seller)</td>
<td>Herbicides</td>
</tr>
<tr>
<td>Span length (2.5 & 50%)</td>
<td>Defoliatior</td>
</tr>
<tr>
<td>Uniformity Ratio</td>
<td>Growth regulators</td>
</tr>
<tr>
<td>Strength of fibers</td>
<td>GM test</td>
</tr>
<tr>
<td>Maturity co-efficient</td>
<td>Heavy metals test</td>
</tr>
<tr>
<td>Trash content</td>
<td>Moisture content</td>
</tr>
<tr>
<td>Micronaire (Fiber fineness)</td>
<td>Formaldehyde content</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Cotton color (fiber color)</td>
<td></td>
</tr>
</tbody>
</table>
6 Social Criteria

6.1 Child Labor
SFP shall not allow child labor to be engaged in the whole chain i.e. from production, process and export. It prohibits exposing the children, whether on site or off site, to any situation or activity that is hazardous or unsafe to the totality of their physical and mental health and development. SFP requires that the company protect the workers moral and ethical needs, in addition to their physical and mental ones.

Children working within the family environment (e.g. on family farms) can perform or participate with the traditional work or activities provided that this work is only performed under these considerations (that the work is limited to the cultural activities of the family including traditional tasks or activities), and excludes all dangerous activities to their physical, mental and moral condition. This work shall not be such as to prejudice their attendance at school.

In cases where child labor is found in a certified company, the certified company shall develop and / or actively engage in initiatives pertaining to educational programs for these children. In practice, this means that the certified company shall provide schooling to children engaged in child labor until the age of 16. Definitions, as defined by the ILO, of a "child" and "child labor", shall be used in this context.

6.2 Forced Labor
Forced or compulsory labor under every condition is prohibited. SFP requires that every prospective worker be fully informed of the terms and condition of the offered employment before his recruitment, pre-employment process and employment. The certified company shall apply a recruiting policy that actively prohibits termination or retirement based on race, caste, national origin, religion, age, disability, gender, marital status, sexual orientation, union membership or political affiliation.

Threats such as monetary sanctions, physical punishment, withholding of papers, loss of rights or privilege and restrictions on movements are prohibited. The company shall ensure that the workers are free to leave and shall not support trafficking workers. Workers shall be given the reasonable notice so that the employee should be able to leave on good terms with the employer. Companies shall not extend workers employment period to find a suitable replacement. Workers are permitted to leave the workplace after completing the standard workday and all overtime be fully voluntary. They are not to be forced to remain at the work premises to work overtime hours.

6.3 Health & Safety
The company shall have a health and safety management system that enables the management to establish, maintain and demonstrate its compliance with the statutory requirements. The management shall nominate representative to address the regular needs of workers through training, instruction, planning and documentation.
Effective health and safety instruction shall be established including the formal communication process where workers are fully aware of health and safety procedures. Records shall be maintained for all accidents in the workplace and in company-controlled residence and property.

The company shall ensure that the personal protective equipment is adequate and feasible for worker to wear. Housing and dormitory facilities whether owned by the company or leased are clean, safe and shall meet the basic needs of the personnel. Persons under the age of 18 shall not be employed at night or operate in hazardous conditions. This conforms to ILO conventions C138 and C182.

6.4 Freedom of Work
All workers shall be provided with written and understandable information about their employment conditions (i.e. an employment contract). This information shall include wages and social benefits and insurances that are deducted by the company. This information shall be presented to the workers upon starting work. Workers shall also be informed about the details of their wages for the pay period concerned each time that they are paid (i.e. pay slip or registration).

The company shall effectively, objectively and transparently communicate to workers their right to form or join trade union. It shall be the workers choice whether he/she joins the trade union. SFP seeks to ensure equal and respectful treatment for all workers in all matters. Workers shall be hired only on the basis of their job-related competence, attributes or skills. Employees shall be employed, trained, promoted and compensated solely on the basis of their job performance. The company shall make sure that the workers are free from all types of indecent verbal, physical and sexual harassment and other discriminatory practices.

Procedures shall be in place, and actions shall be taken where appropriate, to ensure that there is no discrimination against workers’ representatives. These representatives shall have access to persons and facilities in order to carry out their representative positions. Alternative initiatives pertaining to collective bargaining, such as forming local committees with local government, shall be actively facilitated by the company. This is permitted only in countries where trade unions are generally not found.

Workers have the right to leave the certified company after reasonable notice. Workers shall be made aware of the disciplinary policies and procedures in sufficient detail and shall have written and defined disciplinary rules, including an appeal process. Records of workers including non-complying behavior, logs of disciplinary occurrence, list of current cases and appeal and decisions as well as worker training information shall be maintained.

The company shall follow the statutory requirements/state law with regard to working hours and public holidays. Working hours shall comply with national laws and benchmark industry standards, whichever affords greater protection. However, there is no restriction for the work on strictly family farms in their own fields, provided that their health and safety is kept into consideration. This is only permitted if the work is done voluntarily.

The certified company shall apply a 48-hour working a week as a maximum, with as a minimum one day of rest per 7-day period in all forms of labor (be it employed, contract or any other form of labor). The certified company shall apply an overtime policy, in which overtime is voluntary and shall
have a maximum of 12 hours per week. Overtime shall be paid at a premium rate in all forms of labor (be it employed, contracted or any other form of labor).

Workers shall be compensated for the adequate performance of their work and they shall be paid in full for all work performed. Payment for completed work shall be made in full and given to workers in a timely manner. Wages paid for a standard working week meet, at a minimum, national legal standards or industry benchmark standards, whichever is higher. Farm wages shall be well defined as per labor law and shall be paid in accordance with law if the labor is outsourced. All wages shall be paid only in cash, cheque or through electronic fund transfer. The company shall not deduct from wages in any way, except for those deductions permitted or required by national law.

Regulations pertaining to worker rights and obligations, as well as social security laws, policies and regulations shall be upheld, as part of the employment contract. The above shall not be avoided by excessive short-term contracts, sub-contracting or any other alternative labor arrangements. Abuse, or the threat of abuse, of any form, as well as physical and psychological discipline, is prohibited.
7 Safety & Hygiene

- The company shall have an up-to-date written risk assessment for safe and healthy working conditions for farms, farm families and storage and processing units.
- The company shall have an up-to-date written health, safety and hygiene quality manual including issues of the afore-mentioned risk assessment, e.g. accident and emergency procedures, hygiene procedures, dealing with any identified risks in the working situation at farm, storage and processing level.
- The company shall have a senior member of staff assigned with the responsibility of all health, safety and training issues.
- All workers shall wear appropriate protective clothing (protective masks, shoes, gloves) and this clothing shall have been bought or rented at the expense of the company. Criteria related to workers’ rights shall be well defined.
- Records are kept for health, hygiene and safety training activities and attendees, including topics discussed. These records shall be available for all those working in the certified process.
- All workers and farmers in the certified company shall have gone through health and safety training. Records shall be available for this. Criteria related to hygiene, hazards and first aid shall be included in a standardized procedure.
- The company shall have documented hygiene instructions displayed clearly.
- Emergency procedures shall be clearly displayed and be understandable to all workers.
- Warning signs shall be used with each potential hazard.
- First aid kits shall be readily available.
- Workers shall have access to washing facilities, clean drinking water and dining area.
- Dormitories or on-site living facilities shall have running water and hygienic sanitation.
8 Inspection of Smallholder Farmer Groups

8.1 Farmer Group
The farmer group shall consist of a clear and homogeneous group of members with similar agricultural/animal production and are located in geographical proximity. Processors and exporters can be a part of the same group, but they will have to be inspected annually by the (external) CB. In principle only small farmers can be members of the group. Larger farms – bearing an external certification cost that is lower than 2% of their turnover – can also belong to the group, but has to be inspected annually by CB.

A group may be organized in itself (as a co-operative or as a structured group of producers affiliated to a processor or an exporter). A group shall be established formally, based on individual farmer agreements which must be signed by all members of the group.

The structure of the group shall enable the application of a Quality Management System (QMS) across its entire group. All producers and/or production sites that are registered with the group shall adhere to a QMS that governs the production of the products to be certified. The QMS shall be robust and show that the group’s registered members comply in a uniform manner with the SFP standard requirements. A substantial part of the inspection work shall be carried out by internal inspectors in the framework of the internal control system (ICS) set up by the group. For implementation of the procedures to maintain the internal control system, responsibilities shall be delegated to individual members / committees for carrying out specific activities. Members of the farmer group are inspected at least once a year internally by internal inspectors employed by an organization responsible for the Internal Control System (ICS) and randomly by the CB. Internal inspections shall include visits to fields and facilities.

The farmer agreement and standards shall be available in a language understandable to the farmer. The members shall have access and aware of applicable standards for sustainable production. When intended for export, the marketing of the products must be carried out as a group.

8.2 Internal Control System (ICS)
The organization in charge of the internal control system, also referred to as internal inspection body, the following information shall be made available:

1) Legal status, structure, liability of organisation responsible for the ICS;
2) Authorisation for countersigning inspection forms;
3) Rights and obligations of group members as laid down in written farmer agreements.

The internal control and quality system shall be clearly documented including procedures, standardized inspection forms (for example by using a visitor’s book), responsibilities and timeframes. Clear procedures shall be in place indicating actions to be taken in instances of non-compliance with standards, sanctions and exclusion of members. The CB has to be informed in case of irregularities and non-compliances, as well as of the corrective actions imposed with agreed time for completion. 100% of all farms and fields of the group members have to be inspected by the internal inspector.
once in a year. Quarterly, the findings of the internal control and measures taken must be summarized in writing.

The following up-to-date documentation has to be available for the farmer group:

1) Farmer lists with names, identification codes, location, status (certified, in-conversion first or second year or disqualified), crops and hectares;
2) Signed farmer agreements for each member;
3) Administration of sold products, stored products and bought agricultural inputs of each member;
4) Overview realised yield of last year and estimated yield of current year per product;
5) Overview map and detailed farm-maps indicating individual fields per member and information on possible contamination risks from neighbouring fields;
6) Field history for each member with regard to the used fertilisers and plant protection substances (including herbicides, fungicides, pesticides, etc).

Seasonal adequate sampling on residues of sold products shall be performed and results of analysis must be available. Sub-samples per member can be mixed and analyzed as a mixed sample.

Internal inspectors are designated by the group and carry out internal controls. They must receive suitable training and have to be qualified and independent. The field officers cannot be members of the farmer group. A signed field officers agreement specifying tasks and responsibilities are to made available.

Not the individual members, but the group holds the contracts with CB. The group is finally responsible that their members comply with the standards for organic production and processing and that the instructions given are executed.

In case an individual member has not converted the whole farm into sustainable production, guarantees must be given with regard to separation (for example separate storage facilities of agricultural products and inputs).

8.3 External Audit
The CB verifies, evaluates and reports all aspects (with special focus on the effectiveness) of the Internal Control System. Findings of the ICS will be cross-checked. Based on the results of this audit the CB will certify the farmer groups.

The CB carries out at least one annual audit of the group. The annual audit by the CB shall include an inspection visit of a number of individual farms with the aim to verify compliance to the standards and to evaluate the effectiveness of the ICS.

Each year the CB defines and justifies a risk-orientated sample of farms subject to its annual audits:

- For a normal risk situation, it shall not be lower than the square root of the number of farmers in the group;
- For medium risk situations the CB will inspect at least 1.2 square root of the farmers in the group;
- For high risk situations the CB will inspect at least 1.4 square root of the farmers in the group.
The CB defines for the entire group projects the applicable risk category by using its risk assessment document. The farms visited by the CB must be predominantly different from one year to another. Larger farmers, processors and exporters are inspected annually by the CB and shall have a documented sanction policy for groups. In case the CB finds the ICS seriously lack reliability and effectiveness, it shall apply sanctions to the group as a whole, including, in case of serious deficiencies. The certificate shall be withdrawal if the requirements are not been met as the standard.

In case of lack of reliability and effectiveness of the ICS, the sanction will include increasing the number of farms to be annually visited to at least three times the square root of the number of farms in the group.

8.4 Training
Each internal inspector shall be trained annually by a competent person. The date of the training, list of participants shall be documented. The date of participation and content of the training of all ICS staff needs to be documented in the staff files.

The ICS shall organize regular training to the farmers in the group. Each farmer needs to receive at least one initial training. The list of participants and content of the training shall be documented.
Annex I – Pesticides, Growth Regulators, Defoliators, Herbicides and Promoters

The fiber samples are taken for mandatory analysis for pesticides (organic chlorines, organophosphorus and synthetic pyrethroids), herbicides, defoliators and promoters irrespective of the use and based on the country specific approval and allowance. Any banned or prohibited chemicals found in the groups (However, in criteria 2.7, particularly dangerous pesticides, listed in the “Stockholm Convention” (The Stockholm Convention on Persistent Organic Pollutants POPs, May 2004) are not allowed beyond the limit of detection. In case of prohibited or banned chemicals mentioned above, it is declared and highlighted in test reports.

<table>
<thead>
<tr>
<th>Preferable test methods</th>
<th>As appropriate, US EPA 8081 A (organo-chlorine pesticides, with ultrasonic or Soxhlet extraction and apolar solvents (iso-octane or hexane)), 8151 A (chlorinated herbicides, using methanol), 8141 A (organophosphorus compounds), or 8270 C (semi-volatile organic compounds).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent pesticides</td>
<td>Shall not contain more than 0.05 ppm of each of the following substances: aldrin, captafol, chlordane, DDT, dieldrin, endrin, heptachlor, hexachlorobenzene, hexachlorocyclohexane (total isomers), 2,4,5-T, chlordimeform, chlorbenzilate,dinoseb and its salts, monocrotophos, pentachlorophenol, toxaphene,methamidophos, methylparathion, aration, phosphamidon.</td>
</tr>
<tr>
<td>Persistent pesticides</td>
<td>The total sum of the substances listed below shall not exceed 1 ppm (incl. PCP and TeCP: 2,4,5-T 93-76-5 2,4-D 94-75-7 Azinophosmethyl 86-50-0 Azinophosethyl 2642-71-9 Aldrine 309-00-2 Bromophos-ethyl 4824-78-6 Captafol 2425-06-1 Carbaryl 63-25-2 Chlordane 57-74-9 Chlordimeform 1970-95-9 Chlorfenvinphos 470-90-6 Coumaphos 56-72-4 Cyfluthrin 68359-37-5 Cyhalothrin 91465-08-6 Cypermethrin 52315-07-8 DEF Deltamethrin 52918-63-5 DDD 53-19-0, 72-54-8 DDE 3424-82-6, 72-55-9 DDT 50-29-3, 789-02-6 Diazinon 333-41-5 Dichlorprop 120-36-2</td>
</tr>
<tr>
<td>Chemicals</td>
<td>CAS Numbers</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Dicrotophos</td>
<td>141-66-2</td>
</tr>
<tr>
<td>Dieldrine</td>
<td>60-57-1</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>60-51-5</td>
</tr>
<tr>
<td>Dinoseb and salts</td>
<td>88-85-7</td>
</tr>
<tr>
<td>Endosulfan, α-</td>
<td>115-29-7</td>
</tr>
<tr>
<td>Endosulfan, β-</td>
<td>33213-65-9</td>
</tr>
<tr>
<td>Endrine</td>
<td>72-20-8</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>66230-04-4</td>
</tr>
<tr>
<td>Fenvalerate</td>
<td>51630-58-1</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76-44-8</td>
</tr>
<tr>
<td>Heptachloroepoxide</td>
<td>1024-57-3</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
</tr>
<tr>
<td>Hexachlorcyclohexane, α-</td>
<td>319-84-6</td>
</tr>
<tr>
<td>Hexachlorcyclohexane, β-</td>
<td>319-85-7</td>
</tr>
<tr>
<td>Hexachlorcyclohexane, δ-</td>
<td>319-86-8</td>
</tr>
<tr>
<td>Lindane</td>
<td>58-89-9</td>
</tr>
<tr>
<td>Malathion</td>
<td>121-75-5</td>
</tr>
<tr>
<td>MCPA 94-74-6</td>
<td>94-74-6</td>
</tr>
<tr>
<td>MCPB 94-81-5</td>
<td>94-81-5</td>
</tr>
<tr>
<td>Mecoprop</td>
<td>93-65-2</td>
</tr>
<tr>
<td>Metamidophos</td>
<td>10265-92-6</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72-43-5</td>
</tr>
<tr>
<td>Mirex</td>
<td>2385-85-5</td>
</tr>
<tr>
<td>Monocrotophos</td>
<td>6923-22-4</td>
</tr>
<tr>
<td>Parathion</td>
<td>56-38-2</td>
</tr>
<tr>
<td>Parathion-methyl 298-00-0</td>
<td></td>
</tr>
<tr>
<td>Phosdrin/Mevinphos 7786-34-7</td>
<td></td>
</tr>
<tr>
<td>Propethamphos 31218-83-4</td>
<td></td>
</tr>
<tr>
<td>Profenophos</td>
<td>41198-08-7</td>
</tr>
<tr>
<td>Quinalphos</td>
<td>13593-03-8</td>
</tr>
<tr>
<td>Toxaphen (Camphechlor) 8001-35-2</td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>1582-09-8</td>
</tr>
</tbody>
</table>

Note: The regulatory needs of the pesticides and allowed crops, banned chemicals based on the local condition applicable to the country of production and country of sale shall be applicable whilst mentioning the banned status and persistent chemicals.
Annex II – Heavy Metals

An input is considered to be free of heavy metals if it complies with the limit values for traces of the following elements as set by ETAD below:

<table>
<thead>
<tr>
<th>Element</th>
<th>Limit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>50</td>
</tr>
<tr>
<td>Antimony</td>
<td>50</td>
</tr>
<tr>
<td>Barium</td>
<td>100</td>
</tr>
<tr>
<td>Cadmium</td>
<td>20</td>
</tr>
<tr>
<td>Cobalt</td>
<td>500</td>
</tr>
<tr>
<td>Copper</td>
<td>250</td>
</tr>
<tr>
<td>Chrome</td>
<td>100</td>
</tr>
<tr>
<td>Iron</td>
<td>2500</td>
</tr>
<tr>
<td>Manganese</td>
<td>100</td>
</tr>
<tr>
<td>Nickel</td>
<td>200</td>
</tr>
<tr>
<td>Mercury</td>
<td>4</td>
</tr>
<tr>
<td>Selenium</td>
<td>20</td>
</tr>
<tr>
<td>Silver</td>
<td>100</td>
</tr>
<tr>
<td>Zinc</td>
<td>1500</td>
</tr>
<tr>
<td>Tin</td>
<td>250</td>
</tr>
</tbody>
</table>
Glossary

Animal husbandry – The branch of agriculture concerned with the care and breeding of domestic animals.

Bast fiber (or skin fibre) – Plant fiber collected from the phloem (the "inner bark" or the skin) or bast surrounding the stem of certain, mainly dicotyledonous plants, e.g. hemp.

Biodiversity – The degree of variation of life forms within a given species, ecosystem, biome, or an entire planet. Biodiversity is a measure of the health of ecosystems.

Best Management Practices (BMP) – Methods or techniques found to be the most effective and practical means in achieving an objective (such as preventing or minimizing pollution) while making the optimum use of the resources.

Better Cotton Initiative (BCI) – The Better Cotton Initiative is a voluntary program and encourages the adoption of better management practices in cotton cultivation.

(In) Conversion – The process of changing an agriculture farm from conventional to sustainable farm.

Deforestation – Cutting, clearing, and removal of rainforest or related ecosystems into less biodiverse ecosystems such as pasture, cropland, or plantations.

ETAD – The Ecological and Toxicological Association of Dyes and Organic Pigments Manufacturers.

Farmyard manure – The decomposed mixture of dung and urine of farm animals along with litter and left over material from roughages or fodder fed to the cattle.

Fertigation – The application of fertilizers, soil amendments, or other water-soluble products through an irrigation system for increased efficiency.

Freeze-thawing – The action of water seeping into a cracks in a rock, as the temperature drops below freezing, the water freezes and expands causing the crack to enlarge. The ice then melts into water again as the temperature rises above 0 degrees C. This action is repeated until the rock breaks.

Green House Gases (GHG) – Those gases that can absorb and emit infrared radiation. Greenhouse gases allow the sun’s energy to enter the atmosphere, instead of letting it re-radiate back into space.
as infrared radiation, these gasses absorb infrared radiation and trap it in the atmosphere. They include carbon dioxide (CO2), methane (CH4), nitrous oxide (NO2), and water vapor.

GM – Genetic Modification (GM) is the use of modern biotechnology techniques in manipulation of an organism's genome using modern DNA technology.

Herbicide – A chemical used to kill or inhibit the growth of weeds and other unwanted plant pests.

Instars – A developmental stage of insects, between each molt (ecdysis), until sexual maturity is reached.

Integrated Pest Management (IPM) – A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health, and environmental risks. The local IPM is the package of practiced developed based on local climate and adoptability. For India, Ministry of agriculture has developed a common practice as follows: http://www.cicr.org.in/pdf/ipm.pdf. This policy document allows for modification based on the local climatic and soil conditions and available crop species.

ILO – International Labor Organization.

Internal Control System (ICS) – Control procedures put in place by the management of an organization to ensure efficient and effective operation of the activities, so as to meet the organization’s objectives.

Larvae – The immature stage of an insect with complete metamorphosis. The larva stage occurs between the egg and pupal stage.

Leaching – Natural process by which water soluble substances (such as calcium, fertilizers, pesticides) are washed out from soil.

Low (External) Input Sustainable Agriculture System (L(E)ISA) – Sustainable agriculture that seeks to minimize inputs and reduce the risk of environmental pollution. Its approach is to encourage and sustain the activities of some important soil organisms. Source: http://naldc.nal.usda.gov/download/IND20390284/PDF

Material Safety Data Sheet (MSDS) – A document that contains information on the potential hazards (health, fire, reactivity and environmental) and how to work safely with the chemical product. It is an essential starting point for the development of a complete health and safety program.

Maximum Residue Limits (MRLs) – The maximum concentration of residue following administration of a chemical which is legally permitted or acceptable in natural fiber under the laws.

Natural fiber – Fiber obtained from a plant, or animal. Natural fibers are those cellulosic fibers obtained from the seed hairs, stems, and leaves of plants. Protein fibers obtained from the hair, fur, or cocoons of animals.

Non-conformity – Failure to comply with requirements.
Organic certification – Certification of production system, which excludes the use of synthetically compounded fertilizers, pesticides and growth regulators. Certification programs focus on organic manures produced from farm wastes and other biomass and also encompasses a conglomeration of various techniques and practices like intercropping, mulching, cover cropping, trap cropping etc. Organic certification encourages in employing various biological pest control methods, which eliminates the use of synthetic chemicals at field and storage levels.

pH – A measure of the concentration of hydrogen ions (\(= H^+ \)) (protons) in a solution.

PVC – Polyvinyl chloride

Quality Management System (QMS) – A system by which an organization aims to reduce and eventually eliminate non conformance to specifications, standards, and customer expectations in the most cost effective and efficient manner.

Recycled Crop Residues – The on farm crop residues such as weeds, stalk, farmyard manure are recycled back to the soil after proper decomposition.

Slash burning or Slash and burn – A forestry technique which involves cutting down trees and shrubs on a large swath of land, allowing them to dry, and then setting a fire. It is cited as a leading cause of deforestation worldwide.

Vermicompost – The break-down of organic material through the use of earth worms. The end product of vermicomposting is a substance called vermicompost or "worm castings".